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Abstract

The dispersion of the quantitative results in the analysis of volatile compounds from multicomponent mixtures by different
fractionation techniques (solid-phase microextraction and direct thermal desorption) followed by GC or GC–MS presents
nonrandom patterns related to the existence of different factors in the fractionation process or in the chromatographic
separation which affect, to a different extent, the recovery of the sample components. Statistical techniques have been used
to show the relative importance of these factors. The improvement in data precision achieved by using volatile compound
concentration ratios is discussed.
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1 . Introduction and is especially suited to the analysis of volatile
compounds. MS affords additional qualitative in-

Volatile compounds are usually present in natural formation, necessary in many cases for identification.
products as complex mixtures of components with Quantitative analysis is based on peak area measures
different functional groups. Although generally in (usually obtained from flame ionization detection
low concentrations, they are responsible for many (FID) in GC analysis and from total ion current
sample properties such as plant and food aroma. (TIC) or selective-ion monitoring in GC–MS). In
Hence the interest in the qualitative and quantitative both cases a calibration procedure using a suitable
determination of such compounds. standard is required for an accurate determination.

Analysis of volatile mixtures is usually carried out For GC or GC–MS analysis of a sample, non-
by gas chromatography (GC) or GC–mass spec- volatile components which could remain in the
trometry (GC–MS). GC has a high resolving power injection system causing decomposition artefacts

must first be removed. This first step in the analysis
of volatile compounds is usually a fractionation
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desorption are widely used techniques for the frac- ditions, since a low precision is assumed to be the
tionation of volatile compounds. In SPME, volatiles result of inadequate control of experimental parame-
are submitted to a partition and/or adsorption pro- ters. Little attention has been paid to the relations
cess between the sample and a polymeric coating on among the different dispersions presented by differ-
a fused-silica fiber[1]. The fiber is then inserted in ent compounds in a complex mixture, as they are
the GC injector, where volatile compounds are generally supposed to be independent and randomly
desorbed at high temperature to enter the chromato- distributed. However, principal component analysis
graphic column. SPME offers the advantages of low (PCA) has been found to be a useful tool for
cost, simplicity of operation and versatility. distinguishing between different operation conditions

In direct thermal desorption (DTD), volatiles are and among the analytical responses of different
isolated from the solid sample by sweeping with an compounds in SPME analysis[8].
inert gas at a controlled temperature and then The objective of this study was to evaluate the
injected into the gas chromatographic column[2]. application of statistical analysis to the study of
DTD is a fast technique which requires only a very precision in GC or GC–MS analysis of multicom-
small amount of sample and allows automatic opera- ponent mixtures with a view to identifying dispersion
tion, but it cannot be applied to samples which patterns that cannot be attributed to random causes.
contain water or thermally unstable compounds[3].

Although the final analytical step in the techniques
above mentioned is usually GC or GC–MS, results 2 . Experimental
can differ considerably, since component recovery
depends not only on the sampling procedure, the 2 .1. Samples
technique used and the operational conditions, but
also on the volatility, polarity and other physical and An Italian chestnut honey sample was selected for
chemical characteristics of the compounds. volatile analysis in the SPME study. Commercial

Calibration based on the analysis of standard cumin seeds (Santiveri, Spain) were left to dry,
compounds is not easy in quantitative determinations homogenized in a blender and then directly analysed
when the samples analysed contain a high number of by DTD–GC–MS.
volatile components and many of them are not
available. For this reason, when quantitative data are 2 .2. Solid-phase microextraction followed by GC
used for comparative or characterization purposes,
the results are often obtained as relative concen- SPME headspace sampling was done on a manual
tration values, and precision rather than accuracy is SPME holder equipped with an 85-mm polyacrylate
considered the most important parameter. Standard fiber (both from Supelco, Bellefonte, PA, USA).
deviation, or more frequently relative standard devia- Fiber was conditioned at 3008C before analysis until
tion (RSD), are usually employed as estimators of no interfering peaks were obtained in a blank run.
the dispersion for quantitative values and to express The experimental procedure was as follows: 3 g of
the precision of a series of measures[4–7]. honey was exactly weighted into a 10-ml vial and

Methods based on automatic procedures, such as carefully homogenized with 0.5 g of anhydrous
DTD, usually afford precise results, but the main sodium sulphate (previously conditioned overnight at
handicap of SPME is probably lack of precision 808C). The vial was immediately sealed by means of
when using a manual injection system. This lack of a septum and a metallic ring.
precision affects compounds with different charac- After an equilibrium time of 30 min at 708C (with
teristics in different ways. hand shaking after 10 and 20 min), fiber was exposed

Individual or overall precision are parameters in the headspace of honey sample for 20 min.
frequently used to evaluate or compare the quality of GC analyses (n58 replicates) were performed on a
an analytical method. Precision is also considered to gas chromatograph (Perkin-Elmer AutoSystem, Nor-
be one of the most important variables requiring walk, CT, USA) equipped with a FID. The SPME
optimization in the selection of operational con- fiber was desorbed (18 mm deep on the SPME scale)
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at 2508C for 3 min in splitless mode using a 0.75 2 .4. Characterization and quantitative
mm narrow bore liner (1:50 split ratio). Chromato- determination
graphic separation was carried out on a
30 m30.32 mm I.D., 0.5mm film thickness HP- Characterization was based on retention times
Innowax capillary column (Agilent Technologies, (when using FID) or on retention times and mass
USA). The oven was temperature programmed from spectral data (when using GC–MS). GC–MS identi-

2150 8C (4 min) to 2308C (10 min) at 108C min and fications were carried out by comparison of ex-
21up to 2508C (5 min) at 108C min . He at|1 ml perimental mass spectra with those of the Wiley

21min was used as carrier gas. The FID temperature library[10] and using standard compounds when
was 2508C. available.

CHROMCARD for Windows version 1.20 (CE Instru- Relative quantitative values (percentage of total
ments, Milan, Italy) was used for data acquisition volatile composition) were calculated from the peak
and processing. areas of FID or TIC profiles. Differences in response

factor were not taken into account.
2 .3. DTD–GC–MS

2 .5. Statistical data analysis
Volatile fractionation was carried out in an ATD

400 automatic thermal desorption unit (Perkin- 2 .5.1. Experimental data
Elmer). A homogenized cumin sample (10–20 mg) Percent quantitative results were presented as two
was put into a PTFE tube (5234 mm I.D.34.5 mm data matrices of 69 peaks38 replicates (FID peak
O.D.) which was then placed into a stainless steel areas from SPME and GC analysis) and 41 peaks3

desorption cartridge (89 mm34.5 mm I.D.36.5 mm 10 replicates (TIC peak areas from DTD–GC–MS
O.D.). Volatile compounds were desorbed under a analysis).

2140 ml min helium flow at 1808C for 15 min and Mean and RSD values were calculated for each of
then cryofocused on a Tenax GC 60–80 mesh trap at the peaks selected for quantitation. Residual matrices
230 8C. This trap was heated up to 3208C at|40 8C were obtained by subtracting mean values from the
21s and kept at the maximum temperature for 4 min. original values for each run.

The desorbed volatiles were transferred to the GC
column through a fused-silica line heated at 2258C. 2 .5.2. Simulated data

21Inlet and outlet split flows were 100 ml min . Other Simulated data (n510 simulations) were obtained
conditions are detailed elsewhere[9]. using aVISUALBASIC program developed at our labora-

The ATD 400 was connected on line to a GC 8000 tory and based on the Rnd function[12]. They
gas chromatograph (Fisons, Milan, Italy) coupled to presented a normal distribution, with the same mean
an MD 800 quadrupole mass detector (Fisons, and RSD values as those obtained from experimental
Manchester, UK). A methyl silicone SPB-1 capillary data. Residual data matrices from SPME (or DTD)
column (27 m30.25 mm I.D., 0.25mm film thick- simulated data were obtained as previously described
ness) was temperature programmed from 60 to for experimental data.

211808C (at 38C min ) and then to 2508C (at 88C
21 21min ) for 5 min. Helium at|1 ml min was used 2 .5.3. Volatile component ratios

as carrier gas. Blanks were run after each of the ten Ratios between percent concentrations were calcu-
replications. lated for all possible pairs of volatile components

Mass spectra were recorded in the electron impact quantified in each replicate. RSD values were calcu-
(EI) mode at 70 eV, scanning the 38–350m /z range. lated for these ratios.
Interface and source temperature were 280 and
2308C, respectively. 2 .5.4. Data processing

Data acquisition and data processing were carried Statistical analysis was carried out by using the
out using theMASSLAB software, version 1.4 (Fin- BMDP statistical package for PC[11]: calculation of
nigan, Manchester, UK). univariate parameters (program 2D), principal com-
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Fig. 1. Distribution of 2346 correlation coefficients (r) obtained for experimental (white bars) and simulated (grey bars) data matrices from
SPME and GC analysis of chestnut honey volatiles.

ponent analysis and correlation coefficients (program matrices were calculated from percent volatile data
4M) and one-samplet tests for significance of and submitted to PCA.
differences (program 3D). Fig. 1 plots the distribution of the 2346 correlation

coefficients obtained for experimental (white bars)
and simulated (grey bars) data in a given interval;
maximum and minimum values for the ten sets of

3 . Results
simulated values are also shown in this figure by
error bars.

3 .1. Solid-phase microextraction A bar plot is also presented inFig. 2 for the
eigenvalues of the first seven principal components

Volatiles in chestnut honey were analysed as obtained in the PCA analysis of experimental and
described in Experimental. Sixty-nine peaks were simulated data. Bar height represents the variance
characterized from their retention times, and quan- explained by each principal component for ex-
titative data from the chromatographic FID profile perimental (white bars) and simulated (grey bars)
were obtained for each peak in the eight replicates. data.
Area values were normalized as percentage of total Loading values for the first three principal com-
peak area. Experimental and simulated residual ponents are also summarized in the plot ofFig. 3.

 

Fig. 2. Eigenvalues obtained for the first seven principal components (experimental data, white bars; simulated data, grey bars) in the PCA
analysis of honey volatiles by SPME and GC.
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 3 .2. Direct thermal desorption

Volatile compounds were determined from a com-
mercial cumin sample using direct thermal desorp-
tion coupled to GC–MS.

Forty-one compounds were characterized from
their Kovats index and mass spectra, and most of
them were identified. Quantitative results were calcu-
lated directly from TIC peak areas. Mean and RSD

Fig. 3. Number of loadings with absolute value higher than 0.8 in values for both experimental and simulated results
the PCA analysis of chestnut honey volatiles by SPME and GC

were also calculated from the data matrices, and(experimental data, white bars; simulated data, grey bars).
residual matrices were obtained as previously de-

Bars correspond to each principal component num- scribed.
ber, and their height is the number (n) of volatile Program 4M of theBMDP package afforded 820
compounds which present an absolute loading value correlation coefficients between all the possible
higher than 0.8 for this principal component. As compound pairs. The plot inFig. 4 displays the
before, white bars are used for experimental values distribution of their experimental values (white bars)
and grey bars for simulated data. and that of the coefficients obtained from ten simu-

RSD values for the experimental data obtained lated data matrices (grey bars).
from the sixty-nine compounds quantified in eight Fig. 5 presents a bar plot with the eigenvalues of
replicates ranged from 6.8 to 150%. The highest the first nine principal components, calculated by
RSD values observed for some compounds were applying PCA to the experimental and simulated data
probably caused by artefacts from the SPME fiber or matrices. The histogram inFig. 6 shows the dis-
by chromatographic problems. tribution of the highest loadings for the first three

Ratios between the sixty-nine compound concen- principal components: bar height indicates the num-
trations were calculated from the normalized data ber (n) of compounds in which the absolute loading
matrix, and RSD values were obtained for all these value is higher than 0.7. As before, white bars
ratios. Twenty-eight experimental ratios presented an correspond to experimental and grey bars to simu-
RSD value ,3%. When the same procedure was lated data.
applied to the simulated data, only one from the ten The experimental RSD values ranged from 3.5 to
simulations produced two ratios with RSD below 67.8% for 41 compounds quantitatively characterized
3%. in ten replicate analysis.

 

Fig. 4. Distribution of 820 correlation coefficients (r) obtained for experimental (white bars) and simulated (grey bars) data matrices from
DTD–GC–MS analysis of cumin volatiles.
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Fig. 5. Eigenvalues obtained for the first nine principal components (experimental data, white bars; simulated data, grey bars) in the PCA
analysis of cumin volatiles by DTD–GC–MS.

RSD values were also calculated for all the ratios variations are observed for others.Fig. 7 plots four
between pairs of compounds obtained; 30 of these replications in the analysis of volatile compounds
values were,3% for experimental data. No values from a chestnut honey sample using SPME followed
,3% were found in eight of the simulated data sets, by GC. In a few cases (such as peaks marked c in
while only two and one values appeared in the two Fig. 7), the origin is probably the analytical system
remaining data sets. (SPME fiber, septum or column bleed), as their

intensity is independent of sample considerations and
they also appear in blank runs. In most cases,

4 . Discussion however, groups of peaks present a consistent profile
(peaks marked a) which differs from the profiles of

Analytical determinations present quantitative er- peaks in other groups (e.g. peaks marked b). If the
rors which can affect different compounds in differ- relative recovery for these groups depends both on
ent ways. Unless suitable standards showing a be- compound characteristics and on operational con-
haviour similar to that of the compounds being ditions, incomplete control of the latter will result in
analysed are available, this discrimination decreases variable discrimination and hence in loss of preci-
not only the accuracy but also the precision, since sion.
the magnitude of the errors can differ from one Chemical and physical characteristics (polarity,
analysis to another. molecular mass, volatility) of the compounds in a

In GC multicomponent analyses there are com- multicomponent mixture, generally considered to be
monly groups of peaks whose profile for different responsible for discrimination, can change continu-
injections is very similar, while important relative ously. If the effects of each factor were isolated, they

could be studied; however, this is not possible since
 their effect on precision may be cumulative.

The approach followed in this study was to
compare several statistical parameters calculated
from experimental data with those obtained by
random simulations which present a similar overall
dispersion.

4 .1. Correlation coefficients

Fig. 6. Number of loadings with absolute value higher than 0.8 in
The correlation coefficient (r) is the simplestthe PCA analysis of cumin volatiles by DTD–GC–MS (ex-

perimental data, white bars; simulated data, grey bars). measure of the relationship between two sets of
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values. In a simulated matrix, where residuals are
supposed to be independent, correlation coefficients
should present a low absolute value. However, since
n ? (n 21) /2 values ofr are obtained forn com-
pounds, several high positive and negative values are
expected for high values ofn. This type of dis-
tribution appears in the plots for simulated data in
Figs. 1 (honey, SPME) and4 (cumin, DTD).

On the other hand, the distribution ofr values
obtained from experimental data presents distinctive
features, which are clearly shown in the plots of
Figs. 1 and 4.The number ofr values with low
absolute value (centre of the plot) is lower for
experimental data, negative values in the21 to
20.5 range are slightly more frequent in experimen-
tal data, and high positive values (in the 0.6–1 range)
are clearly more frequent in experimental data for
both SPME (honey,Fig. 1) and DTD (cumin,Fig. 4)
data.

Differences between experimental and simulated
correlation coefficient frequencies are highly signifi-
cant for positive values. For SPME data,t values
calculated using the one-samplet test for the differ-
ences in frequencies in the 0.7–1.0 range, were
between 31.6 and 137.2 (probability of being pro-
duced by random causesP,0.01%). For DTD data,
t values are between 18.4 and 96.0, also withP,

0.01%).
In order to interpret these results, we need to

identify groups of compounds that share a particular
behaviour. A useful tool for this purpose is principal
component analysis (PCA).

4 .2. Principal component analysis

With factor analysis, the variance of a data matrix
can be assigned to several mathematical factors, each
of which is a linear combination of the original
variables. In the PCA technique factors are calcu-
lated to explain the maximum proportion of data
variance. The eigenvalues obtained are a measure of
the amount of variance explained by each factor.

The variance in an experimental data matrix is
caused by a combination of random and nonrandom
(‘systematic’) factors. They cannot be estimated
accurately without prior knowledge of their charac-Fig. 7. GC profiles (n54 replicates) for the volatile fractions
teristics, but PCA affords information on their rela-obtained by SPME from a chestnut honey sample. Peaks marked

a, b and c are discussed in the text. tive importance and on the associated variables
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(compounds) for each factor, taking into account that tions of the principal components with the original
several experimental factors can overlap in each variables: an experimental factor that positively
statistical component. affects the response of a group of volatile com-

Fig. 2 plots the eigenvalues calculated using PCA pounds will produce positive loadings for them in the
from the experimental (white bars) and simulated corresponding principal component. For a given
(grey bars) results for the SPME fractionation of compound, the value of the loading depends on the
chestnut honey volatiles. The most important feature intensity of the effect, taking into account that a
of Fig. 2 is the gap between the eigenvalues of third single principal component can be affected by sever-
and fourth components of experimental data, which al experimental factors.
do not appear in the PCA of simulated data. Eigen- As explained in the discussion of correlation
values of components 4–7 decrease in a similar way coefficients, the large number of data obtained in
for both data sets. multicomponent analysis can produce random corre-

The one-samplet test provides for the differences lations and, in turn, apparently significant loadings.
between the three first eigenvalues of experimental For this reason, a comparison with simulated data is
and simulated datat values between 16.7 and 57.3 necessary to estimate the real contribution of nonran-
(P,0.01%, highly significant). dom factors to loading values.

Simulated data eigenvalues show a continuous Fig. 3 is a bar plot comparing the number of
decrease from principal component 1 to component loadings higher than 0.8 in the first, second and third
7. A similar tendency is observed in experimental principal components for experimental (white bars)
data for the lower order (4–7) eigenvalues, that are and simulated (grey bars) SPME data. The number
supposed to correspond to dispersion caused by of high loadings in the three first principal com-
random factors or for singular variables. ponents is consistently greater for experimental data.

Eigenvalues 4–7 from experimental data are about The one-samplet test provides for the differences
a 40% of those from simulated data. If we suppose between experimental and simulated dataP values
that this percentage is valid for all the eigenvalue ,0.01%, proving that these differences are highly
range, we can estimate that nonrandom variance is significant.
about 75% of eigenvalues 1 and 2, and about 70% of Fig. 6 indicates that an effect similar to that
eigenvalue 3. described inFig. 3 exists for the loadings higher than

An analogous procedure was applied for com- 0.8 of the three first principal components calculated
parison of the eigenvalues obtained in the PCA from DTD–GC–MS volatile data.
analysis of experimental and simulated DTD data Correlation coefficients between compounds with
matrices. Differences between eigenvalues are also high loadings present usually a high value. For
significant for the three first components:t values instance, the DTD–GC–MS correlation coefficients
range between 14.0 and 48.4 (P,0.01%). Fig. 5 for the twenty-one possible pairs among the seven
shows, in a similar format to that ofFig. 2, the peaks with loadings.0.9 in the first principal
tendency observed for experimental and simulated component are always in the 0.7–0.9 range.
eigenvalues for the nine first principal components Compounds which present similar high loadings in
calculated. the first principal components are presumably in-

In this case, the amount of variance associated to fluenced in a similar way by one or more experimen-
random factors in experimental data for the principal tal factors. Both loading values and eigenvalues
components 8–9 is about 30% of that of simulated depend on the importance and extent of these factors.
data sets. The estimated proportion of nonrandom Most of the compounds with loadings higher than
variance results to be 80% of eigenvalues 1–2 and 0.900 from DTD–GC–MS data were identified as
75% of eigenvalue 3. sesquiterpenes (b-farnesene, germacrene,trans-

A study on the experimental factors possibly caryophyllene, etc.) and eluted closely in the chro-
associated with the most important eigenvalues matographic column, showing that compounds with
requires to know how the different volatile com- related physical or chemical properties present a
pounds contribute to them. Loadings are the correla- similar dispersion pattern.
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T able 1In the SPME–GC analysis of honey volatiles,
Relative standard deviation (RSD) values for selected peaks in theidentification from the retention time was not pos-
analysis of chestnut honey volatiles by SPME and GC

sible for most peaks. However, a study of the
aRSD Peak number (PC1) Peak number (PC2)relationship between loading values and retention

(%)times shows that most peaks with a high loading for 7 17 22 27 38 54 56 57 69

the second component eluted in the last part of the A 12 11 10 10 11 17 9 21 20
chromatogram, indicating a relatively low volatility. B 5 3 2 2 – 25 27 15 27

C 15 16 15 14 15 11 – 13 12
a4 .3. Volatile component ratios A, RSD calculated from percent data.n58 replicates; B, RSD

for concentration ratios using as reference peak 38. C, RSD for
concentration ratios using as reference peak 56.A sample can be characterized from its volatile

component concentration using relative values. Per-
cent concentrations relative to the total volatile had PCA loadings.0.840 for the first principal
amount are commonly used, but the ratios between component, and correlation coefficients between any
the percent concentrations of two compounds are pair of peaks in the set were.0.69 in every case.
also useful. The parameters used for characterization For DTD results, similar results were obtained:
purposes should be precise enough to discriminate volatiles included in ratios with RSD values,3%
between different samples. had loadings.0.750 and correlation coefficients

The use of an internal standard affords absolute .0.72.
quantitative data, but if the advantages of relative Table 1 lists the relative standard deviation for
values are to be maintained, matrix effects should be nine of the volatiles fractionated by SPME from a
avoided and a compound with similar characteristics chestnut honey sample. The five peaks of the left
to those of the sample components analysed should group present high loadings for the first principal
be selected. When multicomponent samples are component, while the four peaks in the group at the
analysed, this last requirement is difficult unless right have high loadings for the second principal
several standards are included. component. Row A corresponds to the original RSD

The use of ratios between relative compound values for these peaks. In row B, RSD values were
concentrations in experimental data considerably calculated from the ratios between every peak and
improved their RSD values. RSD values for chestnut peak 38 (from the first group), while in row C peak
honey volatile concentrations were always.7%, but 56 from the second group was selected as reference.
when compound concentration ratios were used, 28 In both cases there is a marked increase in precision
of them had RSD values,3%. This increase in when a peak belonging to the same group is selected
precision cannot statistically be caused by the high as reference, while precision decreases when the
number of ratios, since the improvement of precision reference peak belongs to another group. Selection of
when using simulated data was far lower: only two reduced groups of compounds from SPME simulated
ratios presented a RSD value,3% in one simula- data matrices shows no significant improvement in
tion. data precision. Analogous results were obtained for

Similar results were found for the DTD frac- DTD–GC–MS data.
tionation of cumin samples; while no RSD values
,3% appeared in experimental or simulated data,
when concentration ratios were used, up to 30 5 . Conclusions
experimental values were below this limit.

The compound pairs which produce ratios with the Some experimental systematic factors that produce
best RSD values generally belong to compounds quantitative dispersion and hence loss of precision in
which present a high correlation coefficient between the sampling, fractionation and gas chromatographic
concentrations and which also present high loadings analysis of complex mixtures of volatile compounds
in the first principal components. All peaks used in can be studied from the patterns which emerge in the
the 28 ratios having an RSD,3% in the SPME data statistical processing of quantitative data. Eigen-
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values obtained by PCA allow an estimation of the Anual de Medidas de Ayuda a la Apicultura (Project
number of these factors and of the amount of API98-004-C02-02) supported by the European
dispersion that they produce; also, the relative impor- Union and the Ministerio de Agricultura, Pesca y

´ ´tance of systematic and random factors can also be Alimentacion (Spain) and by Direccion General de
´estimated for each principal component. Investigacion (Project PB98-0537-C02-02) from

´The values of the loadings can be used to identify Ministerio de Ciencia y Tecnologıa (Spain). The
chromatographic peaks influenced by systematic authors also thank Santiveri S.A. for supplying the
factors and to estimate the sign and intensity of this cumin sample.
influence. An experimental basis for these factors
could be based on the characterization or identifica-
tion of these peaks and the study of their common
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